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Abstract. Two new exact solutions for the bouncer model are found and their relations to
some solvable and non-solvable Lie algebras are shown.

1. Introduction

We consider here a model, named after Gibbs [1] the bouncer, i.e. a particle falling down
in a constant gravitational field on a plate moving according to a given function of time
L(t). It was suggested by Zaslavsky [2] as an alternative to the well known Fermi–Ulam
model [3] of cosmic ray acceleration.

It is worth noting that the bouncer model has some experimental realizations. The first
apparatus, consisting of an ordinary loudspeaker, a function generator and a small ball, has
been constructed by Pierański [4]. His experimental studies were continued with a modified
apparatus [5, 6] and the results compared with calculations of classical maps which can
be exactly iterated for any functionL(t). For a periodic functionL(t) this has been done
for both one and two frequencies [5, 7]. Usually, the ball-plate collisions are assumed
to be perfectly elastic, though a completely inelastic case has also been studied [8]. For
completeness we should also mention a two-ball variant of the model [9]. All the studies
have shown that the bouncer is an example of a chaotic system when the plate is assumed
to oscillate periodically with some frequency.

Quantization of the bouncer model has been performed quite recently [10]. In order to
do that one needs to solve the time-dependent Schrödinger equation with the Hamiltonian
(h̄ = 1)

H(x) = − 1

2m

d2

dx2
+ mgx (1)

(where m is the mass of the ball andg the acceleration due to gravity) subject to the
boundary and normalization conditions:

∀t :

[
Ψ (x, t) = 0 for x = L(t) and

∫ ∞

L(t)

|Ψ (x, t)|2 dx = 1

]
. (2)

The only known exact solution of the model obeying (2) has been found [11] so far for
L(t) ≡ L1(t) = at2 + bt + c (a, b, c = constant). In such a case the wavefunctions
are given by the Airy functions Ai(· · ·). The periodic motion of the plate, necessary for
the classically chaotic motion to exist, has been represented in the quantum version of the
model [10] by concatenating different parabolasL1(t). Matching suitably the parabolas
one can construct a periodic motion of the plate from a number of convex–convex–· · ·,
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concave–concave–· · · or convex–concave–· · · curves thus leading to three variants of the
model called the ‘convex’, the ‘concave’ or the ‘smooth’ bouncers [10], respectively.

The necessity of a such procedure follows from the fact that finding exact analytical
solutions for wavefunctions is not possible for classical mechanical systems that are chaotic.
Moreover, direct numerical integration of the time-dependent Schrödinger equation (TDSE)
with oscillating perturbations cannot be performed with accuracy required for a trustworthy
analysis of results. Thus, any new exact solution of the TDSE for the discussed model is
a valuable one since it allows to have at our disposal an additional fully tractable physical
model for studying the classical–quantum correspondence. This was the first motivation for
the present study.

The second reason for dealing with the model was the recent controversy concerning
the existence of the exact solutions. We have proved [12] that the solutions proposed and
used in [13] are not correct. The question whether or not any new solutions are can be
derived at all is partly answered here in sections 2 and 3.

2. Solutions of the model

In what follows we shall derive two new exact solutions of the quantum version of the
bouncer model described by equations (1) and (2). To this end, let us start with the most
general linear transformation

x = s(t)y + L(t) (3)

which replaces a moving boundary in thex-space with the fixed one in they-space. Possible
choices for a real functions(t) will be found below and here we requires(t) 6= 0 for any
time. Now, using equations (1) and (3), from the time-dependent Schrödinger equation we
get

is2(t)
∂Ψ

∂t
= − 1

2m

∂2Ψ

∂y2
+ isṡy

∂Ψ

∂y
+ isL̇

∂Ψ

∂y
+ mg(ys3 + Ls2) Ψ (y, t) (4)

where the dot over the symbols denotes the time derivative and, instead of (2) we now have

∀t :

[
Ψ (y, t) = 0 for y = 0 and

∫ ∞

0
|Ψ (y, t)|2 dy = 1

]
. (5)

If the solutionΨ (y, t) is proposed in the form

Ψ (y, t) = (2/s)
1
2 exp

[
im

(
sL̇y + 1

2

∫ t

0
L̇2 dt − g

∫ t

0
L dt

)
+ im

2
sṡy2

]
Φ(y, t) (6)

then equation (4) can be reduced to the simpler equation

is2(t)
∂Φ

∂t
= − 1

2m

∂2Φ

∂y2
+

[
1

2
ms3s̈y2 + m(L̈ + g)s3y

]
Φ(y, t) . (7)

It is obvious at this stage that the solvability of the model is guaranteed when

s3s̈ = C1 = constant (8a)

(L̈ + g)s3 = C2 = constant. (8b)

Equation (8a) has the exact solution

s(t) ≡ s2(t) =
√

at2 − 2bt + c (9)
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with ac − b2 = C1 and we haves2(t) 6= 0 for C1 > 0. Using equation (9) in (8b) and then
integrating the latter twice, we get

L(t) ≡ L2(t) = C2

C1

√
at2 − 2bt + c − 1

2
gt2 + αt + β . (10)

The case ofC1 = 0 has to be considered separately. Now from (8a) we have

s(t) ≡ s3(t) = A + Bt s3(t) 6= 0 (11)

and from (8b) finally

L(t) ≡ L3(t) = C2

2B2(A + Bt)
− 1

2
gt2 + Dt + E . (12)

In equations (10)–(12)α, β, A, B, D andE are integration constants.
For the case ofC1 = 0 the solutions of (7) are given by the Airy functions Ai(· · ·) and

in the case ofC1 > 0 the transformations

Φ(y, t) = exp

[
−iEn

∫ t

0

dt ′

s2
2(t ′)

]
ϕ(y) (13)

and

ξ =
√

2m
√

C1

(
y + C2

C1

)
(14)

reduce equation (7) to an equation for the parabolic cylinder functions in its standard form
[14]. In both cases the final explicit wavefunctions obeying conditions (2) or (5) can be
written without any effort and that is why we omit them here.

We have thus proved that the bouncer model is a solvable one if the plate is moving
according to the functionsL2(t) andL3(t), in addition to theL1(t) found earlier.

3. Lie algebraic considerations

We would like to point out now that the problem of solvability of our model can be posed
in terms of some Lie algebras and the related Wei–Norman [15] or Magnus [16] methods.

Introducing the scaled timeτ as

τ(t) =
∫ t

0

dt ′

s2(t ′)
(15)

we get equations (4) and (7) in the form of standard time-dependent Schrödinger equations
with the Hamiltonians

Hs(y, τ ) = − 1

2m
∂yy + a2(τ )y∂y + a3(τ )∂y + a4(τ )y + a5(τ )

=
5∑

i=1

ai(τ )Hi (16)

and

Hn(y, τ ) = − 1

2m
∂yy + b2(τ )y2 + b3(τ )y . (17)

The functionsai(τ ) andbi(τ ) can easily be found with the help of (4), (7) and (15) when
a simple relationt = t (τ ) exists, as forsk(t) (k = 1, 2, 3) given above, however, detailed
forms of ai andbi are not important here.
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Observe now thatHs(y, τ ) generates a solvable Lie algebraKs = {∂yy, y∂y, ∂y, y, 1}
since the elements ofKs , which are the result of commutation of two Lie elements, form
derived algebras withK(h)

s = {0} for h = 3. If h = 1 we haveK0 = {∂yy, ∂y, y, 1} and this
is a nilpotent Lie algebra which is obviously a subalgebra ofKs . WhenKs is supplemented
by the term∼ y2, i.e. Kn = {∂yy, y∂y, ∂y, y

2, y, 1}, we get a non-solvable Lie algebra
which corresponds to the HamiltonianHn(y, τ ). This time for the derived algebras we have
Kn = K(1)

n = K(2)
n = · · · = K(h)

n for any integerh.
Thus, two solvable cases of the bouncer model correspond to the nilpotent Lie algebras

K0, one in the space(y, t) of the Scḧodinger equation withs(t) = s1(t) = 1 and
L(t) = L1(t), and the other one in the space(y, τ ) with C1 = 0, C2 6= 0, i.e. with
s(t) = s3(t) and L(t) = L3(t). The third solvable case corresponds to thenon-solvable
algebraKn in the space(y, τ ) for C1 > 0, C2 6= 0 with s(t) = s2(t) andL(t) = L2(t).

The algebraKn is called non-solvable since within the scope of the Lie algebraic methods
like, e.g., the Wei–Norman method [15], it leads to some system of nonlinear equations
which, in general, cannot be solved by quadrature. The simple approach developed above
avoids this difficulty.

Formal solutions to the Schrödinger equation can be expressed asΨ (y, τ) =
U(τ, 0)Ψ (y, 0), where the exact form of the evolution operatorU(τ, 0) depends on
the method applied. In the case of the well known formalism developed by Wei and
Norman [15] we can write, e.g., forHs(y, τ ) of (16) the evolution operator asU(τ, 0) =∏5

i=1 exp[gi(τ )Hi ] wheregi(τ ) are solutions of some nonlinear differential equations. The
reader can easily check thatΨ (y, τ) derived in this way obeys the Schrödinger equation for
any τ -dependence of the functionsai(τ ) in (16). Unfortunately, only one member of the
family of solutions obeys the boundary conditions (5). This is the case forL(t) = L1(t),
i.e. s(t) = s1(t) = 1. A very similar situation appears forC1 = 0 in (8a), i.e. for b2(τ ) = 0
in (17). Again, the formally exact wavefunctions can be given for any functionb3(τ ) in
(17), however, there is only one solution obeying (5). This is the case forL(t) = L3(t). For
the full Hamiltonian (17) the related algebra is non-solvable and finding any solution of the
time-dependent Schrödinger equation obeying the boundary conditions (5) is not possible
within the Wei–Norman method. The simple approach developed in this work leads without
such difficulties to another exact physical solution forL(t) = L2(t).

The conclusions hold true also for other forms of the evolution operator. One can use
its Magnus [16] or, e.g., Fer [17] representations but within the transformation (3) and
the Lie algebras discussed here no further exact physical solutions of the bouncer model
can be found. The main troublemaker in this task is the operator∂y closely related to the
momentum operator, a generator of the translation operation. In the restricted Hilbert space,
as for our model, the momentum operator is not, in general, a self-adjoint one.

Failing to pay sufficient attention to the latter point led in the past to erroneous results
as shown in [12]. A deeper insight into the reasons why some wavefunctions cannot fulfil
boundary conditions on a semi-axis has been presented in an elegant way in the very recent
paper [18].

4. Conclusions

In summary, we have proved the solvability of the bouncer model in two more cases. For
each of them the ‘convex’, ‘concave’ and ‘smooth’ variants can be considered as discussed
in the introduction. A number of free parameters in the functionsL2(t) andL3(t) allows
one to conveniently model the motions of the bouncer’s plate within a fixed interval of
time. Of special value is the case ofL3(t). Computer programmes and techniques used for
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the ‘parabolic’ (i.e. withL(t) = L1(t)) bouncer model [10] can also be used with simple
modifications for theL3(t) case since the solutions of the TDSE are represented in both
cases by the same Airy functions. We plan to do the calculations in future and hope they will
enrich our knowledge on the properties of quantum systems which are classically chaotic.
The case ofL2(t) is much more difficult since the solutions of the TDSE are now given
in terms of the parabolic cylinder functions which are not so easy to handle numerically as
the Airy functions.
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